Curativos Reparadores de Tecido: revelando os insights de patentes

Autores

DOI:

https://doi.org/10.9771/cp.v18i3.62037

Palavras-chave:

Curativo, Patentes, Biotecnologia.

Resumo

O tratamento de feridas é considerado um problema de saúde pública, não somente em função do custo para o sistema de saúde, mas também quando o processo fisiológico de cicatrização é comprometido, resultando em feridas crônicas. O objetivo do estudo foi apresentar depósitos de patentes relacionadas a produtos tecnológicos promotores de cicatrização de feridas, por meio de pesquisa documental exploratória em revistas científicas e no banco de dados Orbit Intelligence, utilizando a sintaxe (WOUND HEALING)/TI/AB/CLMS AND (A61L-2300)/IPC/CPC AND STATUS/ACT=GRANTED. Os resultados indicaram 2.156 estratégias inovadoras para tratamento de feridas, das quais 16,48% foram depositadas na China. Os principais produtos tecnológicos descritos incluíram: curativos com liberação lenta de bioativos, curativos com ação anti-inflamatória e antimicrobiana e bioimpressão 3D de tecidos que mimetizam a pele associados a fatores promotores de regeneração tecidual, o que mostra o interesse no desenvolvimento de pesquisa e desenvolvimento na área de reparo tecidual.

Downloads

Não há dados estatísticos.

Biografia do Autor

Paulo Jose Lima Juiz, Universidade Federal do Recôncavo da Bahia

http://lattes.cnpq.br/2818533344854916

Pós-doutorado em Farmácia -UFBA . Doutorado em biotecnologia (UEFS/FIOCRUZ-BA). Doutorado sanduíche pela Università Degli Studi di Ferrara - Itália.Possui mestrado em Imunologia pela Universidade Federal da Bahia. Especialização em Biologia molecular aplicada a medicina forense (UNEB), Especialização em microbiologia (UFBA). Atualmente é docente da Universidade Federal do Recôncavo da Bahia. Professor do corpo permanente do Programa de Pós-Graduação em Propriedade Intelectual e Transferência de Tecnologia para a Inovação. Membro da Sociedade Brasileira de Microbiologia. Membro da Sociedade Brasileira de Farmacognosia. Coordenador do Comitê de Ética em Pesquisa com Seres humanos da UFRB. Gestor da Coordenação de Criação e Inovação da UFRB. Representante Legal da UFRB na Associação Fórum Nacional de Gestores de Inovação e Transferência de Tecnologia (FORTEC) 

Referências

AN, Y. et al. Autophagy promotes MSC-mediated vascularization in cutaneous wound healing via regulation of VEGF secretion. Cell Death Disease, [s.l.], 2018.

ANTEZANA, P. E. et al. The 3D bioprinted scaffolds for wound healing. Pharmaceutics, [s.l.], v. 14, n. 2, p. 464, 2022. DOI: https://doi.org/10.3390%2Fpharmaceutics14020464.

BONNICI, L. et al. Targeting Signalling Pathways in Chronic Wound Healing. International Journal of Molecular Sciences, [s.l.], v. 25, n. 1, p. 50, 2023. DOI: 10.3390/ijms25010050.

BOOTHBY, I. C.; COHEN, J. N.; ROSENBLUM, M. D. Regulatory T cells in skin injury: at the crossroads of tolerance and tissue repair. Science Immunology, [s.l.], v. 5, n. 47, 2020. DOI: https://doi.org/10.1126/sciimmunol.aaz9631.

BRAZIL, J. C. et al. Innate immune cell-epithelial crosstalk during wound repair. Journal of Clinical Investigation, [s.l.], v. 129, n. 8, p. 2.983-2.993, 2019. DOI: https://doi.org/10.1172/jci124618.

CHAE, S.; GIM, J. A study on trend analysis of applicants based on patent classification systems. Information, [s.l.], v. 10, n. 12, p. 364, 2019. DOI: https://doi.org/10.3390/info10120364.

CLARK, R. A. Fibrin is a many splendored thing. Journal of Investigative Dermatolology, [s.l.], v. 121, n. 5, p. 21-22, 2003. DOI: https://doi.org/10.1046/j.1523-1747.2003.12575.x.

DARBY, I. A. et al. Fibroblasts and myofibroblasts in wound healing. Clinical, Cosmetic and Investigational Dermatology, [s.l.], v. 2.014, n. 7, p. 301-311, 2014. DOI: https://doi.org/10.2147%2FCCID.S50046.

DEL AMO, C. et al. Wound dressing selection is critical to enhance platelet-rich fibrin activities in wound care. Int. Journal of Molecular Sciences, [s.l.], v. 21, n. 2, p. 624, 2020. DOI: https://doi.org/10.3390/ijms21020624.

DENG, X.; MAREE, G. M.; ALI, M. A. A review of current advancements for wound healing: biomaterial applications and medical devices. Journal of Biomedical Materials Research, [s.l.], v. 110, n. 11, p. 2.542-2.573, 2022. DOI: https://doi.org/10.1002/jbm.b.35086.

DESMOULIÈRE, A. et al. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. The American Journal of Pathology, [s.l.], v. 146, n. 1, p. 56-66, 1995.

DINDA, M. et al. The water fraction of calendula officinalis hydroethanol extract stimulates in vitro and in vivo proliferation of dermal fibroblasts in wound healing. Phytotherapy Research, [s.l.], v. 20, n. 10, p. 1.696-1.707, 2016. DOI: https://doi.org/10.1002/ptr.5678.

DIPIETRO, L. A.; WILGUS, T. A.; KOH, T. J. Macrophages in healing wounds: paradoxes and paradigms. International Journal of Molecular Sciences, [s.l.], v. 22, n. 2, p. 950, 2021. DOI: https://doi.org/10.3390/ijms22020950.

DORJSEMBE, B. et al. Achillea asiatica extract and its active compounds induce cutaneous wound healing. Journal of Ethnopharmacology, [s.l.], v. 206, n. 12, p. 306-314, 2017. DOI: https://doi.org/10.1016/j.jep.2017.06.006.

ELLIS, S.; LIN, E. J.; TARTAR, D. Immunology of wound healing. Current Dermatolology Repeports, [s.l.], v. 7, p. 350-358, 2018. DOI: https://doi.org/10.1007%2Fs13671-018-0234-9.

FALANGA, V. et al. Wound healing and its impairment in the diabetic foot. Lancet, [s.l.], v.366, p.736-1743, 2005.

FEARNS, N. et al. Placing the patient at the centre of chronic wound care: a qualitative evidence synthesis. Journal of Tissue Viability, [s.l.], v. 26, n. 4, p. 254-259, 2017.

GIVOL, O. et al. A systematic review of calendula officinalis extract for wound healing. Wound Repair and Regeneration, [s.l.], v. 27, n. 5, p. 548-561, 2019. DOI: https://doi.org/10.1111/wrr,12737.

GRAZUL-BILSKA, A. T. et al. Wound healing: the role of growth factors. Drugs Today (Barc), [s.l.], v. 39, p. 787-800, 2003.

HAERTEL, E. et al. Regulatory T cells are required for normal and activin-promoted wound repair in mice. European Journal of Immunology, [s.l.], v. 48, n. 6, p. 1.001-1.013, 2018. DOI: https://doi.org/10.1002/eji.201747395.

HINZ, B.; GABBIANI, G. Cell-matrix and cell-cell contacts of myofibroblasts: role in connective tissue remodeling. Thrombosis and Haemostasis, [s.l.], v. 90, n. 6, p. 993-1.002, 2003. DOI: https://doi.org/10.1160/th03-05-0328.

HONG, W. Decline of the center: the decentralizing process of knowledge transfer of chinese universities from 1985 to 2004. Research Policy, [s.l.], v. 37, p. 580-595, 2008.

HUANG, Y. Z. et al. Mesenchymal stem cells for chronic wound healing: current status of preclinical and clinical studies. Tissue Engineering Part B Reviews, [s.l.], v. 26, n. 6, 2020. DOI: https://doi.org/10.1089/ten.teb.2019.0351.

JEFFCOATE, W.; PRICE, P.; HARDING, K. G. Wound healing and treatments for people with diabetic foot ulcers. Diabetes Metabolism Research and Review, [s.l.], v. 20, p. S78-S89, 2004.

KIRCHNER, S.; LEI, V.; MACLEOD, A. S. The cutaneous wound innate immunological microenvironment. International Journal of Molecular Sciences, [s.l.], v. 21, n. 22, p. 8.748, 2020. DOI: https://doi.org/10.3390/ijms21228748.

KOVEKER, G. B. Growth factors in clinical practice. International Journal of Clinical Practice, [s.l.], v. 54, p. 590-593, 2000.

LANDÉN, N. X.; LI, D.; STÅHLE, M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol. Life Sci., [s.l.], v. 73, p. 3.861-3.885, 2016. DOI: https://doi.org/10.1007%2Fs00018-016-2268-0.

LAROUCHE, J. et al. Immune regulation of skin wound healing: mechanisms and novel therapeutic targets. Advances in Wound Care, [s.l.], v. 7, n. 7, 2018. DOI: https://doi.org/10.1089/wound.2017.0761.

LI, X. Behind the recent surge of chinese patenting: an institutional view. Research Policy, [s.l.], v. 41, n. 1, p. 236-249, 2012. DOI: https://doi.org/10.1016/j.respol.2011.07.003.

LIMA, R. V. K. S.; COLTRO, P. S.; FARINA JÚNIOR, J. A. Negative pressure therapy for the treatment of complex wounds. Revista do Colégio Brasileiro de Cirurgia, [s.l.], v. 44, n. 1, p. 81-93, 2017.

LINDHOLM, C.; SEARLE, R. Wound management for the 21st century: combining effectiveness and efficiency. International Wound Journal, [s.l.], v. 13, n. 52, p. 5-15, 2016. DOI: https://doi.org/10.1111/iwj.12623.

MARKET RESEARCH COMMUNITY. Wound Care Market Share, Size by Product (Advanced Wound Dressing), By Application (Chronic Wounds), End-Use (Hospitals), and Region (Asia Pacific, Europe, North America, Middle East, and Africa, Latin America), and forecast period-2022-2030”. Report ID – MRC_691, [s.l.], p. 215. Category – Healthcare and Pharma, 2023. Disponível em: https://marketresearchcommunity.com/wound-care-market/?gclid=EAIaIQobChMIxNT5iNeB_gIVcMmUCR0C0QleEAAYASAAEgKXDPD_BwE. Acesso em: 24 mai. 2024.

MCKINSEY GLOBAL INSTITUTE. The China effect on global innovation. 2015. Disponível em: https://www.mckinsey.com/~/media/mckinsey/featured%20insights/innovation/gauging%20the%20strength%20of%20chinese%20innovation/mgi%20china%20effect_full%20report_october_2015.ashx. Acesso em: 3 abr. 2024.

MCKINSEY GLOBAL INSTITUTE. Página Oficial. 2024. Disponível em: https://www.mckinsey.com/mgi/overview. Acesso em: 20 abr. 2024.

NARDINI, M. et al. Growth Factors Delivery System for Skin Regeneration: An Advanced Wound Dressing. Pharmaceutics, [s.l.], v. 12, n. 2, p. 120, 2020. DOI: https://doi.org/10.3390%2Fpharmaceutics12020120.

OPNEJA, A.; KAPOOR, S.; STAVROU, E. X. Contribution of platelets, the coagulation and fibrinolytic systems to cutaneous wound healing. Thrombosis Research, [s.l.], v. 179, p. 56-63, 2019. DOI: https://doi.org/10.1016/j.thromres.2019.05.001.

PATENT LENS. Explore o conhecimento global de ciência e tecnologia. 2024. Disponível em: https://www.lens.org/. Acesso em: 20 abr. 2024.

PHILLIPSON, M.; KUBES, P. The healing power of neutrophils. Trends in Immunololgy, [s.l.], v. 40, n. 7, p. 635-647, 2019. DOI: https://doi.org/10.1016/j.it.2019.05.001.

POSNETT, J. et al. The resource impact of wounds on health-care providers in europe. Journal of Wound Care, [s.l.], v. 18, n. 4, p. 154-161, 2009. DOI; http://dx.doi.org/10.12968/jowc.2009.18.4.41607.

QUESTEL ORBIT INTELLIGENCE. What’s happening on Orbit? 2024. Disponível em: https://www.orbit.com/. Acesso em: 20 abr. 2024.

RAHIM, K. et al. Bacterial contribution in chronicity of wounds. Microbial Ecology, [s.l.], v. 73, p. 710-721, 2017. DOI: https://doi.org/10.1007/s00248-016-0867-9.

RAINHOME. Guangzhou Rainhome Pharm & Tech Co., Ltd. China. 2023. Disponível em: http://www.rainhomedical.com/. Acesso em: 15 abr. 2024.

RODRIGUES, M. et al. Wound healing: a cellular perspective. Physiological reviews, [s.l.], v. 99, n. 1, p. 665-706, 2019. DOI: https://doi.org/10.1152/physrev.00067.2017.

RUMBAUT, R. E.; THIAGARAJAN, P. Platelet-vessel wall interactions in hemostasis and thrombosis. Synthesis Lectures on Integrated Systems Physiology: from Molecule to Function, [s.l.], v. 2, n. 1, p. 1-75, 2010.

SÃO PAULO (Cidade). Manual de Padronização de Curativos. São Paulo: Secretaria Municipal de Saúde, 2021. Disponível em: https://docs.bvsalud.org/biblioref/2021/04/1152129/manual_protocoloferidasmarco2021_digital_.pdf. Acesso em: 13 fev. 2024.

SHAFEIE, N.; NAINI, A.T.; JAHROMI, H. K. Comparison of different concentrations of calendula officinalis gel on cutaneous wound healing. Biomedical and Pharmacology Journal, [s.l.], v. 8, n. 2, p. 979-992, 2015. DOI: https://dx.doi.org/10.13005/bpj/850.

SINGER, A. J.; CLARK R. A. Cutaneous wound healing. New England Journal of Medicine, [s.l.], v. 341, n. 10, p. 738-746, 1999. DOI: https://doi.org/10.1056/nejm199909023411006.

SMITH & NEPHEW FOUNDATION. Skin breakdown – the silent epidemic. Smith & Nephew Foundation, Hull, 2007.

TCHERO, H. et al. Antibiotic therapy of diabetic foot infections: a systematic review of randomized controlled trials. Wound Repair and Regeneration, [s.l.], v. 26, n. 5, p. 381-391, 2018. DOI: https://doi.org/10.1111/wrr.12649.

TOTTOLI, E. M. et al. Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics, [s.l.], v. 12, p. 735, 2020. DOI: 10.3390/pharmaceutics12080735.

VISSE, R.; NAGASE, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circulation Research, [s.l.], v. 92, n. 8, p. 827-839, 2003. DOI: https://doi.org/10.1161/01.res.0000070112.80711.3d.

XIAOBING, F. U. Wound care in China: from repair to regeneration. The International Journal of Lower Extremity Wounds, [s.l.], v. 11, n. 3, p. 143-145, 2012. DOI: https://doi.org/10.1177/1534734612457033.

ZOHRA, T. et al. Extraction optimization, total phenolic, flavonoid contents, HPLC-dad analysis and diverse pharmacological evaluations of dysphania ambrosioides (L.) Mosyakin & Clemants. Natural Product Research, [s.l.], v. 33, p. 136-142, 2019. DOI: https://doi.org/10.1080/14786419.2018.1437428.

Downloads

Publicado

2025-07-01

Como Citar

Lopes, D. L., Villarreal, C. F., Alves, R. J. C., & Juiz, P. J. L. (2025). Curativos Reparadores de Tecido: revelando os insights de patentes. Cadernos De Prospecção, 18(3), 806–816. https://doi.org/10.9771/cp.v18i3.62037

Edição

Seção

Prospecções Tecnológicas de Assuntos Específicos