Innovative Production of Ethanol and Acetic Acid From Cheese Whey Permeate by Integrated Sequential Fermentation

Authors

DOI:

https://doi.org/10.9771/cp.v19i1.63065

Keywords:

Yeast, Bacteria, Whey Permeate.

Abstract

The secondary raw material, cheese whey permeate, is rich in lactose and mineral salts. Although it has limited commercial applications, it stands out for its high potential as a low-cost biotechnological substrate. This study proposed and evaluated an innovative sequential fermentation process using the yeast Kluyveromyces marxianus and the acetic bacterium Acetobacter aceti for the integrated production of ethanol and acetic acid in a single fermentation system. Experiments were carried out at different temperatures (26, 29, 32, 35 and 37 °C) and controlled oxygen conditions. The most promising results were obtained at 35 °C and 37 °C, with production of 5.96 g L⁻¹ and 4.63 g L⁻¹ of ethanol and 0.28 g 100 mL⁻¹ and 0.38 g 100 mL⁻¹ of acetic acid, respectively. Technological innovation demonstrated feasibility for the integrated production of both compounds, highlighting the potential for valorization of cheese whey permeate. Future studies should focus on improving the process to optimize production and expand its applicability on a large scale.

Downloads

Download data is not yet available.

Author Biographies

Keiti Lopes Maestre, Western Paraná State University

She holds a PhD in Chemical Engineering from the State University of Western Paraná, awarded in 2020.

Juliana Cristina Chiamenti, Western Paraná State University

Specialist in Project Management from Centro Universitário Univel in 2022.

Edson Antonio da Silva, Western Paraná State University

He holds a PhD in Chemical Engineering from the State University of Campinas (UNESP) in 2001.

Mônica Lady Fiorese, Western Paraná State University

She holds a PhD in Chemical Engineering from the Federal University of Santa Catarina, obtained in 2008.

References

CASAGRANDE, Luiz Fernande. Avaliação de desempenho e sustentabilidade na suinocultura. CAP Accounting and Management, v. 1, n. 1, p. 68-76, 2010.

CHAN, Russell Kuo-fu et al. (Inventores). Mixed cultures for improved fermentation and aerobic stability of silage. Estados Unidos US, 6403084-B1, 2002.

DAS, Bipasha et al. Studies on production of ethanol from cheese whey using Kluyveromyces marxianus. Materials Today: Proceedings, v. 3, n. 10, p. 3253-3257, 2016.

DOS PASSOS, Fernanda Rengel et al. Production of a synbiotic composed of galacto-oligosaccharides and Saccharomyces boulardii using enzymatic-fermentative method. Food Chemistry, v. 353, p. 129486, 2021.

EMBRAPA – EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Sistema de Produção de Vinagres. [S.l.]: Embrapa, 2006.

FERREIRA, Priscila Gonçalves et al. Optimizing ethanol production by thermotolerant Kluyveromyces marxianus CCT 7735 in a mixture of sugarcane bagasse and ricotta whey. Food Science and Biotechnology, v. 24, p. 1421-1427, 2015.

GABARDO, Sabrina et al. Dynamics of ethanol production from whey and whey permeate by immobilized strains of Kluyveromyces marxianus in batch and continuous bioreactors. Renewable Energy, v. 69, p. 89-96, 2014.

GABARDO, Sabrina et al. Dynamics of yeast immobilized-cell fluidized-bed bioreactors systems in ethanol fermentation from lactose-hydrolyzed whey and whey permeate. Bioprocess and Biosystems Engineering, v. 39, p. 141-150, 2016.

GAVA, A. J.; SILVA, C. A. B.; FRIAS, J. R. G. Tecnologia de alimentos: princípios e aplicações. [S.l.]: Brasil Franchising Participações S.A. 2008. 511p.

HADIYANTO, Dessy et al. Optimization of ethanol production from whey through fed-batch fermentation using Kluyveromyces marxianus. Energy Procedia, v. 47, p. 108-112, 2014.

HEIDTMANN, Renata Bemvenuti et al. Caracterização cinética e termodinâmica de β-galactosidase de Kluyveromyces marxianus CCT 7082 fracionada com sulfato de amônio. Brazilian Journal of Food Technology, v. 15, p. 41-49, 2012.

HU, Kang; DICKSON, James (ed.). Membrane processing for dairy ingredient separation. [S.l.]: John Wiley & Sons, 2015.

KONDO, Tetsuya; KONDO, Masao. Efficient production of acetic acid from glucose in a mixed culture of Zymomonas mobilis and Acetobacter sp. Journal of Fermentation and Bioengineering, v. 81, n. 1, p. 42-46, 1996.

MAESTRE, Keiti Lopes et al. (Inventores). Tecnologia de Fabricação de Fermentado Alcoólico e Ácido Acético com Cultura Mista em um Único Processo Fermentativo. Brasil BR, 102020011157-4. 2020.

MAESTRE, Keiti Lopes et al. Cheese whey permeate valorization using sequential fermentations: case study performed in the Western Region of Paraná. Research, Society and Development, v. 10, n. 13, p. e212101321082-e212101321082, 2021.

MAESTRE, Keiti Lopes. Estudo de condições de fermentação alcoólica e acética utilizando subproduto lácteo e diferentes leveduras. 2017. 139p. Dissertação (Mestrado) - Universidade Estadual do Oeste do Paraná, Toledo, PR, 2017.

MAPA – MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO. Anexo à Instrução Normativa DAS/MAPA n. 140/2024. Cartilha de Bebidas. Consolidação das Normas de Bebidas, Fermentado Acético, Vinho e Derivados da Uva e do Vinho. Ministério da Agricultura, Pecuária e Abastecimento, Brasília, DF, 2024.

MOULIN, G.; GALZY, P. Whey, a potential substrate for biotechnology. Biotechnology and Genetic Engineering Reviews, v. 1, n. 1, p. 347-374, 1984.

MÜLLER, José Luis et al. Cultivo de Saccharomyces boulardii em Biorreator Air-Lift e em Frascos Agitados Mecanicamente. 2006. 92p. Dissertação (Mestrado) – Universidade do Vale do Itajaí, Itajaí, SC, 2006.

OZTURK, Gulustan et al. Glycoproteomic and lipidomic characterization of industrially produced whey protein phospholipid concentrate with emphasis on antimicrobial xanthine oxidase, oxylipins and small milk fat globules. Journal Dairy, v. 3, p. 277-302, 2022.

PALMA, M. S. A. et al. Biotecnologia industrial: Biotecnologia da Produção de Alimentos. São Paulo: Editora Edgard Blücher Ltda., 2001. v. 4.

PARASHAR, Archana et al. Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry. Journal of Dairy Science, v. 99, n. 3, p. 1.859-1.867, 2016.

PARRONDO, Javier et al. A note-production of vinegar from whey. Journal of the Institute of Brewing, v. 109, n. 4, p. 356-358, 2003.

PASCHOALINI, Glauce; ALCARDE, Valmir Eduardo. Estudo do processo fermentativo de usina sucroalcooleira e proposta para sua otimização. Revista de Ciência e Tecnologia, v. 16, n. 32, p. 59-68, 2009.

SOORO INGREDIENTES LTDA. Ficha técnica permeado de soro em pó. 2024. (Ficha técnica impressa que acompanha a matéria-prima).

TRIGUEIROS, D. E. G. et al. Medium optimization and kinetics modeling for the fermentation of hydrolyzed cheese whey permeate as a substrate for Saccharomyces cerevisiae var. boulardii. Biochemical Engineering Journal, v. 110, p. 71-83, 2016.

WANG, Zhi et al. Mixed culture of Saccharomyces cerevisiae and Acetobacter pasteurianus for acetic acid production. Biochemical Engineering Journal, v. 79, p. 41-45, 2013.

WATANABE, Kiyoshi et al. (inventores). Process of producing l-lysine using mixed microorganism. Estados Unidos, US 3888737. 1975.

YADAV, Jay Shankar Singh et al. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnology Advances, v. 33, n. 6, p. 756-774, 2015.

YADAV, Jay Shankar Singh et al. Mixed culture of Kluyveromyces marxianus and Candida krusei for single-cell protein production and organic load removal from whey. Bioresource Technology, v. 164, p. 119-127, 2014.

Published

2026-01-01

How to Cite

Maestre, K. L., Chiamenti, J. C. ., Silva, E. A. da, & Fiorese, M. L. . (2026). Innovative Production of Ethanol and Acetic Acid From Cheese Whey Permeate by Integrated Sequential Fermentation. Cadernos De Prospecção, 19(1), 74–83. https://doi.org/10.9771/cp.v19i1.63065

Issue

Section

Propriedade Intelectual, Inovação e Desenvolvimento